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On the basis of the Reynolds equations, a numerical investigation of the flow and separation of oil-polluted
soil particles in a hydrocyclone has been conducted. It has been shown that as a result of the hydrocycloning
it is possible to concentrate the pollutant in a negligible quantity of soil (of the order of a few percent),
which permits reducing its cleaning costs.

Introduction. The problem of hydrocyclone separation of particles of asoil polluted with oil and oil products
is considered. Modelling of the separation process is carried out taking into account the following assumptions:

1) as a result of the soil pollution with oil, the latter wraps its particles in a thin film whose thickness l in
the case of a low concentration of oil is approximately proportional to the pollutant concentration; thus, the polluted
fragment of the soil can be considered as a combination of unadsorbed oil and particles covered with an oil film;

2) a three-phase mixture containing, in addition to the carrier liquid (water), oil droplets and soil particles
covered with an oil film is fed into the hydrocyclone from the feeding branch pipe;

3) the three-dimensional effects are manifested only in a relatively small region in the vicinity of the convey-
ing branch pipe, and in the main body of the hydrocyclone the flow is almost axisymmetric [1]; therefore, the changes
in the parameters in the tangential direction can be neglected to simplify the mathematical model are reduce the vol-
ume of calculations.

Mathematical Model. To describe the hydrodynamics and the transfer processes in the hydrocyclone, the
physicomathematical model was used [2–4]. To describe the flow fields, one uses the two-dimensional axisymmetric
Reynolds equations that are best suited for describing the axisymmetric flow conditions [5]:
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The turbulence characteristics were calculated on the basis of the two-parameter model with the use of balance equa-
tions for the kinetic energy of turbulence k and its dissipation rate ε [5]:
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The values of the constants are chosen in accordance with the recommendations of [6]:

C1 = 1.44 ,   C2 = 1.92 (1 − C3Ri) ,   C3 = 0.001 ,   σk = 1 ,   σε = 1.3 ,   σrϕ = 2.5 ,   Ri = 
k
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To determine the drift velocity of particles relative to the suspension, balance between the mass forces acting
on the particle and the drag forces was assumed [2]. According to the principle of dynamic balance of forces, the ve-
locity of the disperse phase relative to the carrier liquid can be defined as
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The resistance coefficient of a solid sphere of diameter dp covered with a thin film of length l is defined as [7, 8]

Cd = χCd,p , (8)

Cd,p = 
24

Rerel

 + 
3.73

√Rerel

 − 
4.83⋅10

−3
 √Rerel

1 + 3⋅10
−6

 √Rerel

 + 0.49 ,   χ = 
2

3
 
µliq + 3µoilF (λ)

µliq + 2µoilF (λ)
 ,

Rerel = ρliq 

Vrel

 dp
 ⁄ µliq ,   λ = 2l ⁄ dp ,   F (λ) = 

2 + λ
λ

 
1 + λ + 0.4λ2
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Note that with decreasing thickness of the film (λ → 0) the resistance coefficient of the particle covered with
an oil film tends to the values obtained for solid particles: Cd → Cd.p. In the other limiting case (λ → ∞), formula (8)
goes over into the resistance law of liquid droplets defined by the Hadamard–Rybchinskii correction [9]. In this case,
the resistance coefficient is written as

Cd = 
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The mass balance of the solid phase was determined by means of the diffusion equation that describes the
convective transfer of particles by the averaged flow and the stochastic motion of particles as a consequence of turbu-
lent pulsations (turbulent diffusion):
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The turbulent diffusion coefficient of particles  was calculated in a similar manner [10]. In the case of turbulent pul-
sations causing the particle motion described by the Stokes law of resistance (Ret = ρ√kdp

 ⁄ µ > 1), the turbulent diffu-
sion coefficient of particles can be defined as

Dp = Dt 
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where L = k3 ⁄ 2 ⁄ ε, α = 18 
ρ
ρp

 χRet
−1 . In the transition region (1 < Ret ≤ 103), to determine the turbulent diffusion co-

efficient of particles, one can use the relation
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The parameters z1, z2, z3, and z4 in (11) are found in the following way:
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In the case of the Newtonian flow conditions (103 < Ret ≤ 2⋅105), the turbulent diffusion coefficient is defined by the
relation
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where β = 
4
3
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ρ
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Cd(Rerel → ∞)
. We assume the resistance coefficient with the relative Reynolds number tending to

infinity to be equal to Cd(Rerel → ∞) = 0.44.

The suspension density and viscosity depend on the current concentration of the solid phase (and it is as-
sumed thereby that the presence of the solid phase influences the flow structure only in terms of the change in the
suspension density and viscosity). The suspension density was determined in terms of the mass fractions and densities
of particles of different fractions, as well as of the water:
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The effective viscosity (µef) is determined as a sum of the suspension molecular viscosity (µsl) and the turbulent vis-
cosity (µt). The quantity µsl is considered as a function of the molecular viscosity of the carrier medium (water).
(µliq) and the total concentration of the solid phase [1]
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Formula (14) was written for the case where the particle densities of different fractions are unequal. The turbulent vis-
cosity can be calculated with the use of the k–ε model of turbulence [5]:

µt = Cµ ρk
2ε−1

 ,   Cµ = 0.09 . (15)

Because of the ellipticity of the system of differential equations, to close the problem, one has to set the
boundary conditions at all boundaries of the calculated region. The inlet boundary conditions (in the feeding branch
pipe) are determined for all variables. For the problem to be two-dimensional, it is supposed that the inlet into the hy-
drocyclone represents a cylindrical surface whose height is chosen to be equal to the diameter of the feeding branch
pipe. The inlet kinetic energy of turbulence is taken to be proportional to the kinetic energy of the averaged flow.
Thus, the boundary conditions at the inlet are formulated as

vin = 
Qin

πdcdinρ
 ,   uin = 

γQin

πdcdinρ
 ,   win = 

4Qin

πdin
2 ρ

 ,   k = Tu win
2

 ,   ε = 
2kin

3 ⁄ 2

ηdc

 ,   Mj = Mj,in .

Here, γ = 0.15, η = 0.005, Tu = 0.03 are model constants.
At present, in the technical literature [11–14] there is a large number of empirical formulas for determining

the capacities of hydrocyclones Qin or the quantity of suspension that the hydrocyclone can process per unit time.
Many of these formulas are of the form

Qin = CQ ρdindof √ p
ρ

and differ from one another by the values of the constant CQ, which, according to the data of different authors, is in
the range of 0.2 ≤ CQ ≤ 0.4. In the present appear, the value of CQ = 0.27 proposed in [14] is used.

On the symmetry axis, the radial components of gradients of all functions, except for the radial and tangential
velocities that are equal to zero here, are assumed to be equal to zero:
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On the hydrocyclone walls, the adhesion and nonpercolation conditions are modeled. To determine the turbulent char-
acteristics, local equilibrium in the wall-adjacent region is assumed:

v = 0 ,   u = 0 ,   w = 0 ,   
∂Mj

∂n
 = 0 ,   knw = 

τw

ρ √Cµ
 ,   εnw = 

knw
3 ⁄ 2Cµ

3 ⁄ 4

κrnw
 ,

where n is the direction of the normal to the wall. The wall stress τw can be determined as

τw = 










µu ⁄ (Rc − rnw)

EYCµ
0.25ρu ⁄ √k  ln (Y) ⁄ κ

     
at   Y ≤ 11.5 ,

at   Y > 11.5 ,

where κ = 0.4; E = 9.0 (for a smooth wall); Y = 
4
√Cµ  ρ √k (Rc − rnw)/µ.

At the outlet from the hydrocyclone (in both the overflow and underflow launders), the axial components of
the tangential velocity gradients, as well as of the turbulent characteristics k and ε, are assumed to be equal to zero.
The values of the radial velocity v in the outlet cross-sections are taken to be equal to zero. The pressure p in the
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overflow launder is determined from the assumption of radial equilibrium of the flow, whereas the pressure in the un-
derflow launder is assumed to be equal to atmospheric pressure. Thus, in the outlet cross-sections the boundary condi-
tions can be written as

v = 0 ,   
∂p
∂r

 = 
ρw

2

r
   (overflow launder) ,   p = 0   (underflow launder) ,   

∂w

∂x
 = 0 ,   

∂k

∂x
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∂ε
∂x

 = 0 ,     
∂Mj

∂x
 = 0 .

The procedure of solving the above mathematical model is based on the solution of the system of Reynolds
equations in dynamic variables. The finite-difference analog of differential equations was obtained by their integration
inside the control volume of the finite-difference mesh. In the calculations, we used displaced meshes with 100 nodes
in the radial direction and 300 nodes in the axial one. In approximating the convective terms, counterflow differences
with the application of the QUICK scheme were used. In modeling the diffusion terms, the exponential approximation
was used. The system of finite-difference equations is nonlinear, and we used the iteration method for solving it. In
each iteration, longitudinal-transverse run was used. The pressure was calculated by means of the SIMPLE iteration
procedure [15].

Results of the Calculations. On the basis of the mathematical model presented above, a numerical investiga-
tion of the flow structure in the hydrocyclone has been conducted (Fig. 1). The design parameters of the apparatus had
values corresponding to the experiments of [1–4]: dc = 75 mm, din = 25 mm, dof = 25 mm, duf = 12.5 mm, L1 = 75
mm, L2 = 200 mm, L3 = 25 mm, l1 = 100 mm, and l2 = 50 mm.

Consider first the features of the separation of oil droplets in the hydrocyclone. The calculations were per-
formed for droplets distributed in accordance with the Rozin–Ramler distribution function [9]

Ψ (dp) = 1 − exp 



− 





dp

δ




 m



 , (16)

Fig. 1. Scheme of the hydrocyclone.
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where δ = dm
 ⁄ 

m
√ln 2 . In the calculations, the values of the distribution parameters were assumed to be as follows:

dm = 40–60 µm and m = 2.
The particle velocity of small fractions relative  to the carrier liquid is rather small, and the processes of tur-

bulent diffusion are rather intensive. As a result of this, the distribution of the concentrations of small droplets is uni-
form. Large oil droplets that are lighter than the carrier liquid (water) move from the feeding branch pipe to the
hydrocyclone center and then leave it mainly through the overflow launder. As a result, the concentration of oil drop-
lets with their increasing diameter in the overflow launder increases. At the same time, the fraction of oil droplets
leaving the hydrocyclone through the underflow launder sharply decreases and for droplets of diameter more than dp
= 50 µm becomes practically equal to zero.

Calculating the flows of each fraction of droplets through the overflow and underflow launders, we can obtain
the separation curve (concentration of a certain fraction getting into the launder as a function of the droplet size of
this fraction dp):

qof (dp) = Qof (dp) ⁄ Qin (dp) ,

where Qof (dp) and Qin (dp) are the mass flows of oil droplets in the overflow launder and in the feeding branch pipe.
The results of such calculations for various values of the oil density ρoil are presented in Fig. 2. It is seen that with

Fig. 2. Separation curves (yield at the overflow) of oil drops of various diame-
ters dp (p = 1.013⋅105 Pa, dm = 50 µm): 1) ρoil = 650; 2) 750; 3) 850; 4) 950
kg/m3. dp, µm.

Fig. 3. Total yield of oil droplets through the overflow launder (p = 1.013⋅105

Pa): 1) dm = 60; 2) 50; 3) 40 µm.
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increasing oil density the separation efficiency decreases, which is due to the decrease in the density difference be-
tween the droplets and the carrier liquid. The most effective separation is observed for light oil with a density of
ρoil = 650 kg/m3. For heavy oil with a density of 950 < ρoil < 1050 kg/m3, the separation efficiency is determined by
the design features of the hydrocyclone and the regime characteristics of the hydrocycloning process.

Summing up the output of each fraction through the overflow launder, one can determine the total yield of oil
through the drain hole Σqof. The dependence of the total yield of oil on the relative density difference (ρliq − ρoil)/ρliq for
various values of the median diameter dm is shown in Fig. 3. As is seen from this figure, an increase in dm, meaning
an increase in the fraction of large droplets, leads to an increase in the quantity of oil carried off by the overflow
launder. This shows up most vividly for light oil.

Summarizing the analysis of the separation of oil droplets in the hydrocyclone, it may be concluded that about
90% of the oil contained in the fed suspension in the form of droplets are carried off by the overflow launder and
only 10% by the underflow launder. This points to a high efficiency of the hydrocycloning method.

Consider now the results of the investigation of the particle separation of an oil-polluted soil. As mentioned
above, it is considered that the soil particles are covered with an oil film of thickness l. Thus, the diameter of a pol-
luted particle can be defined as d = dp + l. It is assumed that the soil particles are distributed in accordance with the
Rozin–Ramler function with the following parameter values: dm = 40 µm and m = 2. The mean density of an oil-pol-
luted particle is determined as

ρef = ρoil + 
ρp − ρoil

(1 + λ)3  . (17)

A decrease in the effective density of oil-polluted particles of small fractions with increasing l promotes their
carrying off into the overflow launder and their accumulation in the central part of the discharge pipe. The presence
of an oil film on the particles of large fractions practically has no effect on their separation, since the change in the
effective density in this case is rather small. The particle yield at the overflow launder for various values of the oil
film thickness l is shown in Fig. 4. In the absence of pollution or in the case of an insignificant pollution λ < 0.1, the
separation curve in semilogarithmic coordinates has the Gaussian form.

In the case of significant pollution, the separation curve is characterized by the presence of a maximum cor-
responding to the particles of medium fractions. The reason for the nonmonotonicity of the separation curve is as fol-
lows. The highly polluted small particles can be considered as droplets with a small inclusion of the solid phase.
Therefore, their separation is analogous to the separation of droplets: with increasing size of particles their yield into
the overflow launder increases. However, this analogy holds only to a certain limit. As soon as the effective density
of the particle exceeds the carrier liquid density, the separation process changes: now an increase in the particle size
promotes their carrying off by the underflow launder.

Fig. 4. Separation curves (yield at the overflow) of polluted particles of various
diameters dp (p = 1.013⋅105 Pa): 1) l = 0; 2) 0.1; 3) 1; 4) 10 µm. dp, µm.
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Below we present the results of the investigation that permit estimating the efficiency of using the hydrocy-
cloning method for the problems of cleaning the oil-polluted soil. As a parameter characterizing the degree of soil pol-
lution, we use the ratio of the mass fraction of the oil to the mass fraction of the soil:

I = 
Moil

∑ 

j=1

N

Mj

 .

Figure 5 gives the dependence of the relative pollution intensity in the overflow Iof
 ⁄ Iin on the characteristic

size of the soil particle dm at various pressure values in the conveying branch pipe. From Fig. 5 it is seen that at val-
ues of dm > 20 µm, as a result of the hydrocycloning, the pollutant concentration in the overflow sharply increases. In
the underflow, on the contrary, the pollution intensity sharply decreases. Thus, as a result of the hydrocycloning, only
separation products leaving the hydrocyclone through the overflow launder need to be cleaned, whereas those carried
off by the underflow launder need no additional cleaning if adequate operating parameters of the hydrocyclone are
chosen. This indicates that the application of hydrocyclones is highly promising for cleaning soils.

This work was supported by the RF Ministry of science, industry, and technologies (RF President’s grant No.
MD-197.2003.08) as well as by the Alexander von Humboldt foundation (Germany).

NOTATION

a, acceleration, m/sec2; C1, C2, C3, Cµ, parameters in the turbulence model; Cd, drag coefficient; CQ, model
constant; dc, cyclone diameter, mm; dof and duf, diameters of the overflow and underflow launders, mm; din, inlet di-
ameter, mm; Dp, turbulent diffusion coefficient of particles, m/sec2; Dt, turbulent diffusion coefficient of the carrier
phase, m/sec2; dm, median diameter, m; dp, particle diameter, m; E, model parameter; F(λ), function of the relative
film thickness; G, dissipative function, W/m3; g, free fall acceleration, m/sec2; I, degree of soil pollution; k, turbulent
kinetic energy, m2/sec2; L, turbulence scale, m; L1, cylindrical section length, mm; L2, conic section length, mm; L3,
postcyclone length, mm; l, oil film thickness, µm; l1, total length of the discharge pipe, mm; l2, length of the part of
the discharge pipe inserted into the hydrocyclone, mm; Mj, mass concentration of particles of the jth fraction; m, dis-
tribution constant; N, number of fractions of particles; p, pressure, Pa; Q, mass flow, kg/sec; qof(dd), fraction of drop-
lets of a given size leaving the hydrocyclone through the overflow launder; Rc, hydrocyclone radius, m; r, radial
coordinate, m; Re, Reynolds number; Ri, Richardson number; Tu, turbulence intensity; u, axial velocity, m/sec; V, ve-
locity vector, m/sec; v, radial velocity, m/sec; w, tangential velocity, m/sec; x, axial coordinate, m; Y, distance from the

Fig. 5. Relative pollution intensity in the overflow: 1) p = 1.013⋅105; 2) 2.026⋅105;
3) 3.039⋅105 Pa. dm, m.
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wall; z1, z2, z3, z4, parameters in the equation of turbulent diffusion of particles; α, parameter inverse to the relaxation
time of particles; β, parameter characterizing the relaxation path; γ, model constant; δ, distribution constant; ε, turbu-
lent energy dissipation, W/kg; η, model constant; κ, von Karman constant; λ, relative thickness of oil film; µ, dynamic
viscosity, Pa⋅sec; ρ, density, kg/m3; σk, σε, parameters in the turbulence model; σrϕ, anisotropy coefficient; τw, wall
stress, Pa; χ, correction factor in the resistance law; Ψ(dp), distribution function. Subscripts: c, cyclone; d, drag; ef, ef-
fective; in, inlet; liq, liquid; m, median; nw, nearest wall-adjacent node; of, overflow launder; oil, oil; p, particle; rel,
relative; rϕ, corresponding stress tensor component in the cylindrical coordinate system; sl, suspension; t, turbulent; uf,
underflow launder.
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